next up previous contents index
Next: Simple Pendulum: Up: SIMPLE HARMONIC MOTION - Previous: General Properties

The Physical Pendulum


  
Figure 9: The Physical Pendulum
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=4 cm
\epsfbox{figs/sho2.eps}
\end{center}\end{figure}


\begin{displaymath}\frac{d^2\theta }{dt^2} = - \left(\frac{mgL}{I}
\right)\sin\theta\approx -\frac{mgL}{I}\theta \end{displaymath} (21)

where I is the moment of inertia of the pendulum, and the last expression is approximately true for small angular displacements $\theta$ (rads) << 1

 

gabor@theory.uwinnipeg.ca
2001-01-05