next up previous contents index
Next: The Physical Pendulum Up: SIMPLE HARMONIC MOTION - Previous: SIMPLE HARMONIC MOTION -

General Properties

Defining relation:

\begin{displaymath}F = -kx\Leftrightarrow\frac{d^2x}{dt^2} = -\omega^2x \end{displaymath} (11)


\begin{displaymath}\omega = \sqrt{k/m} \end{displaymath} (12)

Solution:

\begin{displaymath}x = A\cos(\omega t + \phi )=a\cos(\omega t)+b\sin(\omega t) \end{displaymath} (13)


\begin{displaymath}v = -\omega A\sin(\omega t + \phi ) \end{displaymath} (14)

Amplitude:

| xmax| = A (15)

Period:

\begin{displaymath}T = \frac{2\pi }{\omega } = 2\pi\sqrt{m/k} \end{displaymath} (16)

Maximum Speed:

\begin{displaymath}\vert v_{max}\vert = \omega A = \sqrt{k/m}A \end{displaymath} (17)

Mechanical energy:

\begin{displaymath}E = \frac{1}{2}mv^2+\frac{1}{2}kx^2 = \frac{1}{2}kA^2 \end{displaymath} (18)

Initial Conditions:
The amplitude and phase can be determined from the initial position, xa, and velocity, va, at any initial time t = ta:

\begin{displaymath}A = \sqrt{x^2_a+\frac{m}{k}v^2_a} = \sqrt{x^2_a + (v_a/\omega )^2}\end{displaymath} (19)


\begin{displaymath}\phi = \tan^{-1}\left(\frac{-v_a}{\omega x_a}\right)-\omega t_a\end{displaymath} (20)

Graph of solution:

  
Figure 8: Position-time and velocity-time graphs for the SHO
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=6 cm
\epsfbox{figs/sho1.eps}
\end{center}\end{figure}


next up previous contents index
Next: The Physical Pendulum Up: SIMPLE HARMONIC MOTION - Previous: SIMPLE HARMONIC MOTION -
gabor@theory.uwinnipeg.ca
2001-01-05