perlfaq8 - System Interaction |
exec()
doesn't return?sleep()
or alarm()
for under a second?atexit()
or setjmp()/longjmp()? (Exception handling)ioctl()
or syscall()?open()
return an error when a pipe open fails?system()
exit on control-C?
perlfaq8 - System Interaction ($Revision: 1.17 $, $Date: 2003/01/26 17:44:04 $)
This section of the Perl FAQ covers questions involving operating system interaction. Topics include interprocess communication (IPC), control over the user-interface (keyboard, screen and pointing devices), and most anything else not related to data manipulation.
Read the FAQs and documentation specific to the port of perl to your operating system (eg, the perlvms manpage, the perlplan9 manpage, ...). These should contain more detailed information on the vagaries of your perl.
The $^O variable ($OSNAME if you use English) contains an indication of the name of the operating system (not its release number) that your perl binary was built for.
exec()
doesn't return?Because that's what it does: it replaces your currently running
program with a different one. If you want to keep going (as is
probably the case if you're asking this question) use system()
instead.
How you access/control keyboards, screens, and pointing devices (``mice'') is system-dependent. Try the following modules:
Term::Cap Standard perl distribution Term::ReadKey CPAN Term::ReadLine::Gnu CPAN Term::ReadLine::Perl CPAN Term::Screen CPAN
Term::Cap Standard perl distribution Curses CPAN Term::ANSIColor CPAN
Tk CPAN
Some of these specific cases are shown below.
In general, you don't, because you don't know whether the recipient has a color-aware display device. If you know that they have an ANSI terminal that understands color, you can use the Term::ANSIColor module from CPAN:
use Term::ANSIColor; print color("red"), "Stop!\n", color("reset"); print color("green"), "Go!\n", color("reset");
Or like this:
use Term::ANSIColor qw(:constants); print RED, "Stop!\n", RESET; print GREEN, "Go!\n", RESET;
Controlling input buffering is a remarkably system-dependent matter. On many systems, you can just use the stty command as shown in getc in the perlfunc manpage, but as you see, that's already getting you into portability snags.
open(TTY, "+</dev/tty") or die "no tty: $!"; system "stty cbreak </dev/tty >/dev/tty 2>&1"; $key = getc(TTY); # perhaps this works # OR ELSE sysread(TTY, $key, 1); # probably this does system "stty -cbreak </dev/tty >/dev/tty 2>&1";
The Term::ReadKey module from CPAN offers an easy-to-use interface that should be more efficient than shelling out to stty for each key. It even includes limited support for Windows.
use Term::ReadKey; ReadMode('cbreak'); $key = ReadKey(0); ReadMode('normal');
However, using the code requires that you have a working C compiler and can use it to build and install a CPAN module. Here's a solution using the standard POSIX module, which is already on your systems (assuming your system supports POSIX).
use HotKey; $key = readkey();
And here's the HotKey module, which hides the somewhat mystifying calls to manipulate the POSIX termios structures.
# HotKey.pm package HotKey;
@ISA = qw(Exporter); @EXPORT = qw(cbreak cooked readkey);
use strict; use POSIX qw(:termios_h); my ($term, $oterm, $echo, $noecho, $fd_stdin);
$fd_stdin = fileno(STDIN); $term = POSIX::Termios->new(); $term->getattr($fd_stdin); $oterm = $term->getlflag();
$echo = ECHO | ECHOK | ICANON; $noecho = $oterm & ~$echo;
sub cbreak { $term->setlflag($noecho); # ok, so i don't want echo either $term->setcc(VTIME, 1); $term->setattr($fd_stdin, TCSANOW); }
sub cooked { $term->setlflag($oterm); $term->setcc(VTIME, 0); $term->setattr($fd_stdin, TCSANOW); }
sub readkey { my $key = ''; cbreak(); sysread(STDIN, $key, 1); cooked(); return $key; }
END { cooked() }
1;
The easiest way to do this is to read a key in nonblocking mode with the Term::ReadKey module from CPAN, passing it an argument of -1 to indicate not to block:
use Term::ReadKey;
ReadMode('cbreak');
if (defined ($char = ReadKey(-1)) ) { # input was waiting and it was $char } else { # no input was waiting }
ReadMode('normal'); # restore normal tty settings
If you only have do so infrequently, use system
:
system("clear");
If you have to do this a lot, save the clear string so you can print it 100 times without calling a program 100 times:
$clear_string = `clear`; print $clear_string;
If you're planning on doing other screen manipulations, like cursor positions, etc, you might wish to use Term::Cap module:
use Term::Cap; $terminal = Term::Cap->Tgetent( {OSPEED => 9600} ); $clear_string = $terminal->Tputs('cl');
If you have Term::ReadKey module installed from CPAN, you can use it to fetch the width and height in characters and in pixels:
use Term::ReadKey; ($wchar, $hchar, $wpixels, $hpixels) = GetTerminalSize();
This is more portable than the raw ioctl
, but not as
illustrative:
require 'sys/ioctl.ph'; die "no TIOCGWINSZ " unless defined &TIOCGWINSZ; open(TTY, "+</dev/tty") or die "No tty: $!"; unless (ioctl(TTY, &TIOCGWINSZ, $winsize='')) { die sprintf "$0: ioctl TIOCGWINSZ (%08x: $!)\n", &TIOCGWINSZ; } ($row, $col, $xpixel, $ypixel) = unpack('S4', $winsize); print "(row,col) = ($row,$col)"; print " (xpixel,ypixel) = ($xpixel,$ypixel)" if $xpixel || $ypixel; print "\n";
(This question has nothing to do with the web. See a different FAQ for that.)
There's an example of this in crypt in the perlfunc manpage). First, you put the
terminal into ``no echo'' mode, then just read the password normally.
You may do this with an old-style ioctl()
function, POSIX terminal
control (see the POSIX manpage or its documentation the Camel Book), or a call
to the stty program, with varying degrees of portability.
You can also do this for most systems using the Term::ReadKey module from CPAN, which is easier to use and in theory more portable.
use Term::ReadKey;
ReadMode('noecho'); $password = ReadLine(0);
This depends on which operating system your program is running on. In the case of Unix, the serial ports will be accessible through files in /dev; on other systems, device names will doubtless differ. Several problem areas common to all device interaction are the following:
sysopen()
and O_RDWR|O_NDELAY|O_NOCTTY
from the
Fcntl module (part of the standard perl distribution). See
sysopen in the perlfunc manpage for more on this approach.
print DEV "atv1\012"; # wrong, for some devices print DEV "atv1\015"; # right, for some devices
Even though with normal text files a ``\n'' will do the trick, there is still no unified scheme for terminating a line that is portable between Unix, DOS/Win, and Macintosh, except to terminate ALL line ends with ``\015\012'', and strip what you don't need from the output. This applies especially to socket I/O and autoflushing, discussed next.
print()
them,
you'll want to autoflush that filehandle. You can use select()
and the $|
variable to control autoflushing (see $| in the perlvar manpage
and select in the perlfunc manpage, or the perlfaq5 manpage, ``How do I flush/unbuffer an
output filehandle? Why must I do this?''):
$oldh = select(DEV); $| = 1; select($oldh);
You'll also see code that does this without a temporary variable, as in
select((select(DEV), $| = 1)[0]);
Or if you don't mind pulling in a few thousand lines of code just because you're afraid of a little $| variable:
use IO::Handle; DEV->autoflush(1);
As mentioned in the previous item, this still doesn't work when using socket I/O between Unix and Macintosh. You'll need to hard code your line terminators, in that case.
read()
or sysread(), you'll have to
arrange for an alarm handler to provide a timeout (see
alarm in the perlfunc manpage). If you have a non-blocking open, you'll likely
have a non-blocking read, which means you may have to use a 4-arg
select()
to determine whether I/O is ready on that device (see
select in the perlfunc manpage.
While trying to read from his caller-id box, the notorious Jamie Zawinski <jwz@netscape.com>, after much gnashing of teeth and fighting with sysread, sysopen, POSIX's tcgetattr business, and various other functions that go bump in the night, finally came up with this:
sub open_modem { use IPC::Open2; my $stty = `/bin/stty -g`; open2( \*MODEM_IN, \*MODEM_OUT, "cu -l$modem_device -s2400 2>&1"); # starting cu hoses /dev/tty's stty settings, even when it has # been opened on a pipe... system("/bin/stty $stty"); $_ = <MODEM_IN>; chomp; if ( !m/^Connected/ ) { print STDERR "$0: cu printed `$_' instead of `Connected'\n"; } }
You spend lots and lots of money on dedicated hardware, but this is bound to get you talked about.
Seriously, you can't if they are Unix password files--the Unix password system employs one-way encryption. It's more like hashing than encryption. The best you can check is whether something else hashes to the same string. You can't turn a hash back into the original string. Programs like Crack can forcibly (and intelligently) try to guess passwords, but don't (can't) guarantee quick success.
If you're worried about users selecting bad passwords, you should proactively check when they try to change their password (by modifying passwd(1), for example).
Several modules can start other processes that do not block your Perl program. You can use IPC::Open3, Parallel::Jobs, IPC::Run, and some of the POE modules. See CPAN for more details.
You could also use
system("cmd &")
or you could use fork as documented in fork in the perlfunc manpage, with further examples in the perlipc manpage. Some things to be aware of, if you're on a Unix-like system:
open
ing a pipe (see open in the perlfunc manpage) but on some systems this
means that the child process cannot outlive the parent.
system("cmd&")
.
$SIG{CHLD} = sub { wait };
$SIG{CHLD} = 'IGNORE';
You can also use a double fork. You immediately wait()
for your
first child, and the init daemon will wait()
for your grandchild once
it exits.
unless ($pid = fork) { unless (fork) { exec "what you really wanna do"; die "exec failed!"; } exit 0; } waitpid($pid,0);
See Signals in the perlipc manpage for other examples of code to do this.
Zombies are not an issue with system("prog &")
.
You don't actually ``trap'' a control character. Instead, that character generates a signal which is sent to your terminal's currently foregrounded process group, which you then trap in your process. Signals are documented in Signals in the perlipc manpage and the section on ``Signals'' in the Camel.
Be warned that very few C libraries are re-entrant. Therefore, if you
attempt to print()
in a handler that got invoked during another stdio
operation your internal structures will likely be in an
inconsistent state, and your program will dump core. You can
sometimes avoid this by using syswrite()
instead of print().
Unless you're exceedingly careful, the only safe things to do inside a
signal handler are (1) set a variable and (2) exit. In the first case,
you should only set a variable in such a way that malloc()
is not
called (eg, by setting a variable that already has a value).
For example:
$Interrupted = 0; # to ensure it has a value $SIG{INT} = sub { $Interrupted++; syswrite(STDERR, "ouch\n", 5); }
However, because syscalls restart by default, you'll find that if
you're in a ``slow'' call, such as <FH>, read(), connect(), or
wait(), that the only way to terminate them is by ``longjumping'' out;
that is, by raising an exception. See the time-out handler for a
blocking flock()
in Signals in the perlipc manpage or the section on ``Signals''
in the Camel book.
If perl was installed correctly and your shadow library was written
properly, the getpw*() functions described in the perlfunc manpage should in
theory provide (read-only) access to entries in the shadow password
file. To change the file, make a new shadow password file (the format
varies from system to system--see passwd for specifics) and use
pwd_mkdb(8)
to install it (see pwd_mkdb for more details).
Assuming you're running under sufficient permissions, you should be
able to set the system-wide date and time by running the date(1)
program. (There is no way to set the time and date on a per-process
basis.) This mechanism will work for Unix, MS-DOS, Windows, and NT;
the VMS equivalent is set time
.
However, if all you want to do is change your time zone, you can probably get away with setting an environment variable:
$ENV{TZ} = "MST7MDT"; # unixish $ENV{'SYS$TIMEZONE_DIFFERENTIAL'}="-5" # vms system "trn comp.lang.perl.misc";
sleep()
or alarm()
for under a second?If you want finer granularity than the 1 second that the sleep()
function provides, the easiest way is to use the select()
function as
documented in select in the perlfunc manpage. Try the Time::HiRes and
the BSD::Itimer modules (available from CPAN, and starting from
Perl 5.8 Time::HiRes is part of the standard distribution).
In general, you may not be able to. The Time::HiRes module (available from CPAN, and starting from Perl 5.8 part of the standard distribution) provides this functionality for some systems.
If your system supports both the syscall()
function in Perl as well as
a system call like gettimeofday(2), then you may be able to do
something like this:
require 'sys/syscall.ph';
$TIMEVAL_T = "LL";
$done = $start = pack($TIMEVAL_T, ());
syscall(&SYS_gettimeofday, $start, 0) != -1 or die "gettimeofday: $!";
########################## # DO YOUR OPERATION HERE # ##########################
syscall( &SYS_gettimeofday, $done, 0) != -1 or die "gettimeofday: $!";
@start = unpack($TIMEVAL_T, $start); @done = unpack($TIMEVAL_T, $done);
# fix microseconds for ($done[1], $start[1]) { $_ /= 1_000_000 }
$delta_time = sprintf "%.4f", ($done[0] + $done[1] ) - ($start[0] + $start[1] );
atexit()
or setjmp()/longjmp()? (Exception handling)Release 5 of Perl added the END block, which can be used to simulate atexit(). Each package's END block is called when the program or thread ends (see the perlmod manpage manpage for more details).
For example, you can use this to make sure your filter program managed to finish its output without filling up the disk:
END { close(STDOUT) || die "stdout close failed: $!"; }
The END block isn't called when untrapped signals kill the program, though, so if you use END blocks you should also use
use sigtrap qw(die normal-signals);
Perl's exception-handling mechanism is its eval()
operator. You can
use eval()
as setjmp and die()
as longjmp. For details of this, see
the section on signals, especially the time-out handler for a blocking
flock()
in Signals in the perlipc manpage or the section on ``Signals'' in
the Camel Book.
If exception handling is all you're interested in, try the exceptions.pl library (part of the standard perl distribution).
If you want the atexit()
syntax (and an rmexit()
as well), try the
AtExit module available from CPAN.
Some Sys-V based systems, notably Solaris 2.X, redefined some of the standard socket constants. Since these were constant across all architectures, they were often hardwired into perl code. The proper way to deal with this is to ``use Socket'' to get the correct values.
Note that even though SunOS and Solaris are binary compatible, these values are different. Go figure.
In most cases, you write an external module to do it--see the answer to ``Where can I learn about linking C with Perl? [h2xs, xsubpp]''. However, if the function is a system call, and your system supports syscall(), you can use the syscall function (documented in the perlfunc manpage).
Remember to check the modules that came with your distribution, and CPAN as well---someone may already have written a module to do it. On Windows, try Win32::API. On Macs, try Mac::Carbon. If no module has an interface to the C function, you can inline a bit of C in your Perl source with Inline::C.
ioctl()
or syscall()?Historically, these would be generated by the h2ph tool, part of the
standard perl distribution. This program converts cpp(1)
directives
in C header files to files containing subroutine definitions, like
&SYS_getitimer, which you can use as arguments to your functions.
It doesn't work perfectly, but it usually gets most of the job done.
Simple files like errno.h, syscall.h, and socket.h were fine,
but the hard ones like ioctl.h nearly always need to hand-edited.
Here's how to install the *.ph files:
1. become super-user 2. cd /usr/include 3. h2ph *.h */*.h
If your system supports dynamic loading, for reasons of portability and sanity you probably ought to use h2xs (also part of the standard perl distribution). This tool converts C header files to Perl extensions. See the perlxstut manpage for how to get started with h2xs.
If your system doesn't support dynamic loading, you still probably ought to use h2xs. See the perlxstut manpage and the ExtUtils::MakeMaker manpage for more information (in brief, just use make perl instead of a plain make to rebuild perl with a new static extension).
Some operating systems have bugs in the kernel that make setuid scripts inherently insecure. Perl gives you a number of options (described in the perlsec manpage) to work around such systems.
The IPC::Open2 module (part of the standard perl distribution) is an
easy-to-use approach that internally uses pipe(), fork(), and exec()
to do
the job. Make sure you read the deadlock warnings in its documentation,
though (see the IPC::Open2 manpage). See
Bidirectional Communication with Another Process in the perlipc manpage and
Bidirectional Communication with Yourself in the perlipc manpage
You may also use the IPC::Open3 module (part of the standard perl distribution), but be warned that it has a different order of arguments from IPC::Open2 (see the IPC::Open3 manpage).
You're confusing the purpose of system()
and backticks (``). system()
runs a command and returns exit status information (as a 16 bit value:
the low 7 bits are the signal the process died from, if any, and
the high 8 bits are the actual exit value). Backticks (``) run a
command and return what it sent to STDOUT.
$exit_status = system("mail-users"); $output_string = `ls`;
There are three basic ways of running external commands:
system $cmd; # using system() $output = `$cmd`; # using backticks (``) open (PIPE, "cmd |"); # using open()
With system(), both STDOUT and STDERR will go the same place as the
script's STDOUT and STDERR, unless the system()
command redirects them.
Backticks and open()
read only the STDOUT of your command.
You can also use the open3()
function from IPC::Open3. Benjamin
Goldberg provides some sample code:
To capture a program's STDOUT, but discard its STDERR:
use IPC::Open3; use File::Spec; use Symbol qw(gensym); open(NULL, ">", File::Spec->devnull); my $pid = open3(gensym, \*PH, ">&NULL", "cmd"); while( <PH> ) { } waitpid($pid, 0);
To capture a program's STDERR, but discard its STDOUT:
use IPC::Open3; use File::Spec; use Symbol qw(gensym); open(NULL, ">", File::Spec->devnull); my $pid = open3(gensym, ">&NULL", \*PH, "cmd"); while( <PH> ) { } waitpid($pid, 0);
To capture a program's STDERR, and let its STDOUT go to our own STDERR:
use IPC::Open3; use Symbol qw(gensym); my $pid = open3(gensym, ">&STDERR", \*PH, "cmd"); while( <PH> ) { } waitpid($pid, 0);
To read both a command's STDOUT and its STDERR separately, you can redirect them to temp files, let the command run, then read the temp files:
use IPC::Open3; use Symbol qw(gensym); use IO::File; local *CATCHOUT = IO::File->new_tempfile; local *CATCHERR = IO::File->new_tempfile; my $pid = open3(gensym, ">&CATCHOUT", ">&CATCHERR", "cmd"); waitpid($pid, 0); seek $_, 0, 0 for \*CATCHOUT, \*CATCHERR; while( <CATCHOUT> ) {} while( <CATCHERR> ) {}
But there's no real need for *both* to be tempfiles... the following should work just as well, without deadlocking:
use IPC::Open3; use Symbol qw(gensym); use IO::File; local *CATCHERR = IO::File->new_tempfile; my $pid = open3(gensym, \*CATCHOUT, ">&CATCHERR", "cmd"); while( <CATCHOUT> ) {} waitpid($pid, 0); seek CATCHERR, 0, 0; while( <CATCHERR> ) {}
And it'll be faster, too, since we can begin processing the program's stdout immediately, rather than waiting for the program to finish.
With any of these, you can change file descriptors before the call:
open(STDOUT, ">logfile"); system("ls");
or you can use Bourne shell file-descriptor redirection:
$output = `$cmd 2>some_file`; open (PIPE, "cmd 2>some_file |");
You can also use file-descriptor redirection to make STDERR a duplicate of STDOUT:
$output = `$cmd 2>&1`; open (PIPE, "cmd 2>&1 |");
Note that you cannot simply open STDERR to be a dup of STDOUT in your Perl program and avoid calling the shell to do the redirection. This doesn't work:
open(STDERR, ">&STDOUT"); $alloutput = `cmd args`; # stderr still escapes
This fails because the open()
makes STDERR go to where STDOUT was
going at the time of the open(). The backticks then make STDOUT go to
a string, but don't change STDERR (which still goes to the old
STDOUT).
Note that you must use Bourne shell (sh(1)) redirection syntax in
backticks, not csh(1)! Details on why Perl's system()
and backtick
and pipe opens all use the Bourne shell are in the
versus/csh.whynot article in the ``Far More Than You Ever Wanted To
Know'' collection in http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz . To
capture a command's STDERR and STDOUT together:
$output = `cmd 2>&1`; # either with backticks $pid = open(PH, "cmd 2>&1 |"); # or with an open pipe while (<PH>) { } # plus a read
To capture a command's STDOUT but discard its STDERR:
$output = `cmd 2>/dev/null`; # either with backticks $pid = open(PH, "cmd 2>/dev/null |"); # or with an open pipe while (<PH>) { } # plus a read
To capture a command's STDERR but discard its STDOUT:
$output = `cmd 2>&1 1>/dev/null`; # either with backticks $pid = open(PH, "cmd 2>&1 1>/dev/null |"); # or with an open pipe while (<PH>) { } # plus a read
To exchange a command's STDOUT and STDERR in order to capture the STDERR but leave its STDOUT to come out our old STDERR:
$output = `cmd 3>&1 1>&2 2>&3 3>&-`; # either with backticks $pid = open(PH, "cmd 3>&1 1>&2 2>&3 3>&-|");# or with an open pipe while (<PH>) { } # plus a read
To read both a command's STDOUT and its STDERR separately, it's easiest and safest to redirect them separately to files, and then read from those files when the program is done:
system("program args 1>/tmp/program.stdout 2>/tmp/program.stderr");
Ordering is important in all these examples. That's because the shell processes file descriptor redirections in strictly left to right order.
system("prog args 1>tmpfile 2>&1"); system("prog args 2>&1 1>tmpfile");
The first command sends both standard out and standard error to the temporary file. The second command sends only the old standard output there, and the old standard error shows up on the old standard out.
open()
return an error when a pipe open fails?If the second argument to a piped open()
contains shell
metacharacters, perl fork()s, then exec()s a shell to decode the
metacharacters and eventually run the desired program. If the program
couldn't be run, it's the shell that gets the message, not Perl. All
your Perl program can find out is whether the shell itself could be
successfully started. You can still capture the shell's STDERR and
check it for error messages. See How can I capture STDERR from an external command? elsewhere in this document, or use the
IPC::Open3 module.
If there are no shell metacharacters in the argument of open(), Perl runs the command directly, without using the shell, and can correctly report whether the command started.
Strictly speaking, nothing. Stylistically speaking, it's not a good
way to write maintainable code. Perl has several operators for
running external commands. Backticks are one; they collect the output
from the command for use in your program. The system
function is
another; it doesn't do this.
Writing backticks in your program sends a clear message to the readers of your code that you wanted to collect the output of the command. Why send a clear message that isn't true?
Consider this line:
`cat /etc/termcap`;
You forgot to check $?
to see whether the program even ran
correctly. Even if you wrote
print `cat /etc/termcap`;
this code could and probably should be written as
system("cat /etc/termcap") == 0 or die "cat program failed!";
which will get the output quickly (as it is generated, instead of only at the end) and also check the return value.
system()
also provides direct control over whether shell wildcard
processing may take place, whereas backticks do not.
This is a bit tricky. You can't simply write the command like this:
@ok = `grep @opts '$search_string' @filenames`;
As of Perl 5.8.0, you can use open()
with multiple arguments.
Just like the list forms of system()
and exec(), no shell
escapes happen.
open( GREP, "-|", 'grep', @opts, $search_string, @filenames ); chomp(@ok = <GREP>); close GREP;
You can also:
my @ok = (); if (open(GREP, "-|")) { while (<GREP>) { chomp; push(@ok, $_); } close GREP; } else { exec 'grep', @opts, $search_string, @filenames; }
Just as with system(), no shell escapes happen when you exec()
a list.
Further examples of this can be found in Safe Pipe Opens in the perlipc manpage.
Note that if you're use Microsoft, no solution to this vexing issue is even possible. Even if Perl were to emulate fork(), you'd still be stuck, because Microsoft does not have a argc/argv-style API.
Some stdio's set error and eof flags that need clearing. The
POSIX module defines clearerr()
that you can use. That is the
technically correct way to do it. Here are some less reliable
workarounds:
$where = tell(LOG); seek(LOG, $where, 0);If that doesn't work, try seeking to a different part of the file and then back. If that doesn't work, try seeking to a different part of the file, reading something, and then seeking back. If that doesn't work, give up on your stdio package and use sysread.
Learn Perl and rewrite it. Seriously, there's no simple converter. Things that are awkward to do in the shell are easy to do in Perl, and this very awkwardness is what would make a shell->perl converter nigh-on impossible to write. By rewriting it, you'll think about what you're really trying to do, and hopefully will escape the shell's pipeline datastream paradigm, which while convenient for some matters, causes many inefficiencies.
Try the Net::FTP, TCP::Client, and Net::Telnet modules (available from CPAN). http://www.cpan.org/scripts/netstuff/telnet.emul.shar will also help for emulating the telnet protocol, but Net::Telnet is quite probably easier to use..
If all you want to do is pretend to be telnet but don't need the initial telnet handshaking, then the standard dual-process approach will suffice:
use IO::Socket; # new in 5.004 $handle = IO::Socket::INET->new('www.perl.com:80') || die "can't connect to port 80 on www.perl.com: $!"; $handle->autoflush(1); if (fork()) { # XXX: undef means failure select($handle); print while <STDIN>; # everything from stdin to socket } else { print while <$handle>; # everything from socket to stdout } close $handle; exit;
Once upon a time, there was a library called chat2.pl (part of the standard perl distribution), which never really got finished. If you find it somewhere, don't use it. These days, your best bet is to look at the Expect module available from CPAN, which also requires two other modules from CPAN, IO::Pty and IO::Stty.
First of all note that if you're doing this for security reasons (to avoid people seeing passwords, for example) then you should rewrite your program so that critical information is never given as an argument. Hiding the arguments won't make your program completely secure.
To actually alter the visible command line, you can assign to the variable $0 as documented in the perlvar manpage. This won't work on all operating systems, though. Daemon programs like sendmail place their state there, as in:
$0 = "orcus [accepting connections]";
Assuming your system supports such things, just send an appropriate signal to the process (see kill in the perlfunc manpage). It's common to first send a TERM signal, wait a little bit, and then send a KILL signal to finish it off.
If by daemon process you mean one that's detached (disassociated from its tty), then the following process is reported to work on most Unixish systems. Non-Unix users should check their Your_OS::Process module for other solutions.
fork && exit;
The Proc::Daemon module, available from CPAN, provides a function to perform these actions for you.
Good question. Sometimes -t STDIN
and -t STDOUT
can give clues,
sometimes not.
if (-t STDIN && -t STDOUT) { print "Now what? "; }
On POSIX systems, you can test whether your own process group matches the current process group of your controlling terminal as follows:
use POSIX qw/getpgrp tcgetpgrp/; open(TTY, "/dev/tty") or die $!; $tpgrp = tcgetpgrp(fileno(*TTY)); $pgrp = getpgrp(); if ($tpgrp == $pgrp) { print "foreground\n"; } else { print "background\n"; }
Use the alarm()
function, probably in conjunction with a signal
handler, as documented in Signals in the perlipc manpage and the section on
``Signals'' in the Camel. You may instead use the more flexible
Sys::AlarmCall module available from CPAN.
The alarm()
function is not implemented on all versions of Windows.
Check the documentation for your specific version of Perl.
Use the BSD::Resource module from CPAN.
Use the reaper code from Signals in the perlipc manpage to call wait()
when a
SIGCHLD is received, or else use the double-fork technique described
in How do I start a process in the background? in the perlfaq8 manpage.
The DBI module provides an abstract interface to most database servers and types, including Oracle, DB2, Sybase, mysql, Postgresql, ODBC, and flat files. The DBI module accesses each database type through a database driver, or DBD. You can see a complete list of available drivers on CPAN: http://www.cpan.org/modules/by-module/DBD/ . You can read more about DBI on http://dbi.perl.org .
Other modules provide more specific access: Win32::ODBC, Alzabo, iodbc, and others found on CPAN Search: http://search.cpan.org .
system()
exit on control-C?You can't. You need to imitate the system()
call (see the perlipc manpage for
sample code) and then have a signal handler for the INT signal that
passes the signal on to the subprocess. Or you can check for it:
$rc = system($cmd); if ($rc & 127) { die "signal death" }
If you're lucky enough to be using a system that supports non-blocking reads (most Unixish systems do), you need only to use the O_NDELAY or O_NONBLOCK flag from the Fcntl module in conjunction with sysopen():
use Fcntl; sysopen(FH, "/tmp/somefile", O_WRONLY|O_NDELAY|O_CREAT, 0644) or die "can't open /tmp/somefile: $!":
The easiest way is to have a module also named CPAN do it for you. This module comes with perl version 5.004 and later.
$ perl -MCPAN -e shell
cpan shell -- CPAN exploration and modules installation (v1.59_54) ReadLine support enabled
cpan> install Some::Module
To manually install the CPAN module, or any well-behaved CPAN module for that matter, follow these steps:
perl Makefile.PL
make
make test
make install
If your version of perl is compiled without dynamic loading, then you just need to replace step 3 (make) with make perl and you will get a new perl binary with your extension linked in.
See the ExtUtils::MakeMaker manpage for more details on building extensions. See also the next question, ``What's the difference between require and use?''.
Perl offers several different ways to include code from one file into another. Here are the deltas between the various inclusion constructs:
1) do $file is like eval `cat $file`, except the former 1.1: searches @INC and updates %INC. 1.2: bequeaths an *unrelated* lexical scope on the eval'ed code.
2) require $file is like do $file, except the former 2.1: checks for redundant loading, skipping already loaded files. 2.2: raises an exception on failure to find, compile, or execute $file.
3) require Module is like require "Module.pm", except the former 3.1: translates each "::" into your system's directory separator. 3.2: primes the parser to disambiguate class Module as an indirect object.
4) use Module is like require Module, except the former 4.1: loads the module at compile time, not run-time. 4.2: imports symbols and semantics from that package to the current one.
In general, you usually want use
and a proper Perl module.
When you build modules, use the PREFIX option when generating Makefiles:
perl Makefile.PL PREFIX=/u/mydir/perl
then either set the PERL5LIB environment variable before you run scripts that use the modules/libraries (see the perlrun manpage) or say
use lib '/u/mydir/perl';
This is almost the same as
BEGIN { unshift(@INC, '/u/mydir/perl'); }
except that the lib module checks for machine-dependent subdirectories. See Perl's the lib manpage for more information.
use FindBin; use lib "$FindBin::Bin"; use your_own_modules;
Here are the suggested ways of modifying your include path:
the PERLLIB environment variable the PERL5LIB environment variable the perl -Idir command line flag the use lib pragma, as in use lib "$ENV{HOME}/myown_perllib";
The latter is particularly useful because it knows about machine dependent architectures. The lib.pm pragmatic module was first included with the 5.002 release of Perl.
It's a perl4-style file defining values for system networking
constants. Sometimes it is built using h2ph when Perl is installed,
but other times it is not. Modern programs use Socket;
instead.
Copyright (c) 1997-2003 Tom Christiansen and Nathan Torkington. All rights reserved.
This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.
Irrespective of its distribution, all code examples in this file are hereby placed into the public domain. You are permitted and encouraged to use this code in your own programs for fun or for profit as you see fit. A simple comment in the code giving credit would be courteous but is not required.
perlfaq8 - System Interaction |