next up previous contents index
Next: Torque and Angular Momentum Up: Circular Motion of Point Previous: Circular Motion of Point

Definitions of Physical Quantities


  
Figure 1: Circular Motion
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=4 cm
\epsfbox{figs/rot1.eps}
\end{center}\end{figure}

Angular Velocity:

\begin{displaymath}\omega={d\theta\over dt}={v_t\over r}\end{displaymath}

Angular Acceleration:

\begin{displaymath}\alpha = {d\omega\over dt} = {a_t\over r}\end{displaymath}

Period:

\begin{displaymath}T={2\pi r\over v_t} = {2\pi\over \omega}\end{displaymath}

Centripetal Acceleration:

\begin{displaymath}a_c = {v_t^2\over r}\end{displaymath}

Rotational Kinetic Energy:

\begin{displaymath}{\rm KE}_{{\rm rot}}= {1\over 2} mv_t^2 = {1\over 2} m(r\omega)^2 =
{1\over 2} I \omega^2\end{displaymath}

Moment of Inertia about a Given Axis of Rotation:

I = mr2

Torque

\begin{displaymath}\tau = r F_{\perp}= rF \sin(\theta)= I\alpha= {d L\over dt}\end{displaymath}

Angular Momentum

\begin{displaymath}L= I \omega = m v_t r\end{displaymath}

NOTE:


next up previous contents index
Next: Torque and Angular Momentum Up: Circular Motion of Point Previous: Circular Motion of Point
gabor@theory.uwinnipeg.ca
2001-01-05