next up previous index
Next: Problem Solving Strategies Up: Rotational Equilibrium and Dynamics Previous: Rotational Kinetic Energy

Angular Momentum

Definition: Angular Momentum

The angular momentum, L of a rigid body with moment of inertia I rotating with angular velocity $\omega$ is:

L = I$\displaystyle\omega$. (14)

This is the rotational analogue of linear momentum.
Note: The units of angular momentum are kg $\cdot$ m 2/s.

The dynamical torque equation can be written in terms of angular momemtum:

$\displaystyle\tau$ = I$\displaystyle\alpha$   
  = I$\displaystyle\lim_{\Delta t\to 0}^{}$$\displaystyle{\Delta \omega\over \Delta t}$   
  = $\displaystyle\lim_{\Delta t\to 0}^{}$$\displaystyle{I \omega - I\omega_0\over\Delta t}$   
  = $\displaystyle\lim_{\Delta t\to 0}^{}$$\displaystyle{\Delta L\over \Delta t}$. (15)
This is the rotational analogue of Newton's second law: $\vec{F}$ = $\lim_{\Delta t\to 0}^{}$${\frac{\Delta \vec{p}}{\Delta t}}$ .

Idea: Conservation of Angular Momentum

In the absence of external torque ($\sum$$\tau$ = 0) , the angular momentum of a rotating rigid body is conserved $\Rightarrow$ $\Delta$L = 0 , or

Ii$\displaystyle\omega_{i}^{}$ = If$\displaystyle\omega_{f}^{}$. (16)

For systems that consist of many rigid bodies and/or particles, the total angular momentum about any axis is the sum of the individual angular momenta. The conservation of angular moment also applies to such systems. In the absence of external forces acting on the system, the total angular momentum of the system remains constant.

Note:


next up previous index
Next: Problem Solving Strategies Up: Rotational Equilibrium and Dynamics Previous: Rotational Kinetic Energy

www-admin@theory.uwinnipeg.ca
10/9/1997