Next: About this document ...
Up: Magnetism
Previous: Force between two parallel
What is the net force (magnitude and direction) on
the electron moving in the magnetic field in Fig. 1.10
if B = 2 T,
v = 4 x 104 m/s, and
= 30 o ?
Solution:
We first find the magnitude of the force as
F = qvBsin = 1.6 x 10- 19 4 x 104 2 sin 30 o = 6.4 x 10- 15 N .
To determine the direction, we note that x is directed out of the page, and so the force on a negative charge is opposite to this. Thus, the force on the electron is 6.4 x 10- 15 N directed into the page.
Suppose a very long straight wire of linear mass
density 20 g/m is immersed in a constant magnetic
field B = 3 T, as in Fig. 1.11. What current I would be
required so that the wire will be suspended?
Solution:
We note that the force per unit length due to gravity,
= g,
is directed downwards, while the force per unit length due to the magnetic field,= IB,
is acting upwards. In order that they balance, we demandg = IB I = = = 0.065 A .
Thus, the wire must carry a current of 0.065 A in order to be suspended.
Consider the mass spectrometer in Fig. 1.12. The electric field
between the plates of the velocity selector is E = 950 V/m,
and the magnetic field B in both the velocity selector and
in the deflection chamber has a magnitude of 0.9 T.
Find the radius r for a singly charged ion of mass
m = 2.18 x 10- 26 kg in the deflection chamber.
Solution:
We first use the fact that in order for the ion to pass
through the velocity selector undeflected the force due
to the electric and magnetic fields must balance. Note that
the force on a positive charge is downwards due to the electric
field and upwards due to the magnetic field; to balance,
we then have
qE = qvB v = .
When the ion enters the deflection chamber it experiences a magnetic force, causing it to go in a circular orbit. The magnetic force then gives rise to the centripetal acceleration asF = qvB = m qB = .
We thus findr = v = = = 1.6 x 10- 4 m .
Thus, the radius of the orbit is 0.16 mm.
The two long straight
wires in Fig. 1.13 each carry a current of I = 5 A
in opposite directions
and are separated by a distance d = 30 cm. Find the magnetic
field a distance l = 20 cm to the right of the wire on the
right.
Solution:
We shall use the expression for the magnetic field
of a long straight wire a distance r away as
B = ,
with direction given by the appropriate right-hand-rule. Due to the wire on the right, the magnetic field isBR = = = 1.0 x 10- 5 T ,
which is directed out of the page. Due to the wire on the left, the magnetic field isBL = = = 2.0 x 10- 6 T ,
which is directed into the page. Thus, the net magnetic field is 1.0 x 10- 5 - 2.0 x 10- 6 = 8.0 x 10- 6 T directed out of the page.
For the arrangement shown in Fig. 1.14,
the long straight wire carries a
current of I1 = 5 A. This wire is a distance d = 0.1 m away from
a rectangular loop of dimensions a = 0.3 m and b = 0.4 m which
carries a current I2 = 10 A. Find the net force exerted on the
rectangular loop by the long straight wire.
Solution:
The force
= l x on the rectangular
loop arises due to the magnetic field
B = I/2r of the
long straight wire. We first of all note that the force
cancels between the top and bottom portions of the loop.
Now, on the left
portion of the loop,
BL = ,
directed into the page, which gives rise to a forceFL = bI2BL = = = 4 x 10- 5 N ,
which is directed to the left. On the right portion of the loop,BR = ,
directed into the page, which gives rise to a forceFR = bI2BR = = = 1 x 10- 5 N ,
which is directed to the right. Thus, the net force is 4 x 10- 5 - 1 x 10- 5 = 3 x 10- 5 N directed to the left.www-admin@theory.uwinnipeg.ca