next up previous index
Next: About this document ... Up: Circular Motion and the Previous: Newton's Law of Gravitation

Problems

% latex2html id marker 1101
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

A bicycle wheel of radius r = 1.5  m starts from rest and rolls 100 m without slipping in 30 s. Calculate a) the number of revolutions the wheel makes, b) the number of radians through which it turns, c)The average angular velocity.

Solution:

a)
If there is no slipping, the arc length through which a point of the rim moves is equal to the distance travelled, so that the number of revolutions is:

n = = $\displaystyle{100 \;{\:\rm m}\over 2\pi
(1.5 \;{\:\rm m})}$ = 10.6.

b)

$\displaystyle\Delta$$\displaystyle\theta$ = 2$\displaystyle\pi$n = $\displaystyle{s\over r}$ = $\displaystyle{100 \;{\:\rm m} \over
 1.5\;{\:\rm m}}$ = 66.7  radians.

c)
Average angular velocity:

$\displaystyle\overline{\omega}$ = $\displaystyle{\Delta
\theta \over
\Delta t}$ = $\displaystyle{66.7 \;{\:\rm radians}\over 30 \;{\:\rm s}}$ = 2.22  rads/s.







% latex2html id marker 1117
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

Assuming that the angular acceleration of the wheel given above was constant, calculate: a) The angular acceleration, b) the final angular velocity c) the tangential velocity and tangential acceleration of a point on the rim after one revolution.

Solution:

a)
For constant angular acceleration:

$\displaystyle\Delta$$\displaystyle\theta$ = $\displaystyle\omega_{o}^{}$$\displaystyle\Delta$t + $\displaystyle{1\over 2}$$\displaystyle\alpha$($\displaystyle\Delta$t)2.

Using $\omega_{o}^{}$ = 0 and solving for $\alpha$ gives:

$\displaystyle\alpha$ = $\displaystyle{\frac{2\Delta\theta}{(\Delta t)^{2}}}$ = $\displaystyle{\frac{2(66.7)}{30^2}}$ = 0.15 rads/s 2.

b)

$\displaystyle\omega$ = $\displaystyle\omega_{o}^{}$ + $\displaystyle\alpha$$\displaystyle\Delta$t = 0 + (0.15)(30) = 4.5  rads/s.

c)
After one revolution, $\Delta$$\theta$ = 2$\pi$ . Using

$\displaystyle\omega^{2}_{}$ = 2$\displaystyle\alpha$$\displaystyle\Delta$$\displaystyle\theta$ + $\displaystyle\omega_{o}^{2}$

we get

$\displaystyle\omega$ = $\displaystyle\sqrt{2 \alpha (2\pi)}$ = 1.37  rads/s.

The tangential velocity and acceleration are:

vt = r$\displaystyle\omega$ = (1.5  m )(1.37  rads/s ) = 2.06  m/s

and

at = r$\displaystyle\alpha$ = (1.5  m )(0.15 rads/s 2) = .225 m/s 2.







% latex2html id marker 1157
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

A yo-yo of mass 100 g is spun in a vertical circle at the end of a 0.8 m string at a constant angular velocity of 4 rads/s. Calculate a) the tension in the string at the top of its trajectory, b) the tension in the string at the bottom of the trajectory.

Solution:

a)

  
Figure 7.4: Problem 7.3b)
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=4 cm
\epsfbox{fig7-4.eps}\end{center}\end{figure}

At the top of its trajectory, the centripetal force is provided by the sum of the tension in the string and the weight, see Figure 7.4.

mac = T + mg

so that
T = mr$\displaystyle\omega^{2}_{}$ - mg   
  = .1  kg x .8  m x (4  rads/s )2 - .1  kg x 9.8  m/s 2 = 0.3  N.   
b)

  
Figure 7.5: Problem 7.3b)
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=4 cm
\epsfbox{fig7-4b.eps}\end{center}\end{figure}

At the bottom of the trajectory, the centripetal force is provided by the difference between the tension and the weight (see Figure 7.5).

mac = T - mg

so that

T = mac + mg = mr$\displaystyle\omega^{2}_{}$ + mg = 2.26  N.







% latex2html id marker 1165
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

The same yo-yo as in the previous problem is spun in a horizontal circle, as shown in Figure 7.5.

  
Figure 7.6: Problem 7.4
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=4 cm
\epsfbox{fig7-5.eps}\end{center}\end{figure}

If the string makes an angle of 30 o to the vertical, what is the period of rotation?

Solution:
Apply Newton's Laws of Motion:

m$\displaystyle\vec{a}_{c}^{}$ = $\displaystyle\vec{T}$ + $\displaystyle\vec{W}$.

Decompose forces into vertical and horizontal components.

Vertical:

0 = Tcos $\displaystyle\theta$ - mg.

This implies that

T = $\displaystyle{\frac{mg}{\cos\theta}}$ = 1.13  N.

Horizontal:

mac = Tsin $\displaystyle\theta$   
$\displaystyle\Rightarrow$ mr$\scriptstyle\perp$$\displaystyle\omega^{2}_{}$ = Tsin $\displaystyle\theta$.   
This gives:

$\displaystyle\omega$ = $\displaystyle\sqrt{T \sin\theta\over m r_\perp}$

where r$\scriptstyle\perp$ = rsin $\theta$ . So:

$\displaystyle\omega$ = $\displaystyle\sqrt{T \sin\theta\over m r\sin\theta}$ = 3.76  rads/s.

The period is therefore:

T = $\displaystyle{2\pi\over \omega}$ = 1.67  s.

Note: as $\theta$$\to$90 o , T$\to$$\infty$ in order to balance the gravitational force, so that the period $\to$ 0: i.e. you must spin it infinitally fast to get it to be horizontal. Try it!







% latex2html id marker 1201
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

What is the relationship between the radius of orbit of a satelite (mass m ) and its period?

Solution:
The centripetal force is provided by the gravitational pull of the Earth, which is the only force acting on the satellite Newton's Second Law is therefore:

$\displaystyle\sum$Fc = mac = $\displaystyle{Gm M_E\over r^2}$   
mr$\displaystyle\omega^{2}_{}$ = $\displaystyle{Gm M_E\over r^2.}$   
where ME is the mass of the Earth. Solve for $\omega$ :

$\displaystyle\omega$ = $\displaystyle\sqrt{G M_E \over r^3.}$

The period is:

T = $\displaystyle{2\pi\over \omega}$ = .

The above expression is called Kepler's Law. Note: The period is independent of the mass of the satelite.







% latex2html id marker 1218
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

The escape velocity of any object is the speed it must achieve to escape the gravitational pull of the Earth. Calculate the escape velocity for an object of mass m .

Solution:
We can use conservation of mechanical energy (neglecting air resistance):

KEf + PEf = KEi + PEi.

Suppose the object starts at the earth's surface with speed vE and reaches r = $\infty$ with vf = 0 . The final kinetic and potential energy are zero, whereas KEi = ${1\over 2}$mvE2 and PEi = - GmME/RE . Thus

0 = $\displaystyle{1\over 2}$mvE2 - $\displaystyle{GmM_E\over R_E}$

The escape velocity is therefore:

vE = $\displaystyle\sqrt{2 GM_E \over R_E}$.

Using ME = 6 x 1024  kg and RE = 6.4 x 106  m yields:

vE = 11  km/s

Note:
next up previous index
Next: About this document ... Up: Circular Motion and the Previous: Newton's Law of Gravitation

www-admin@theory.uwinnipeg.ca
10/9/1997