next up previous contents index
Next: Reflection and Transmission: Up: WAVES - Ch. 16-18. Previous: Wave Pulse:

Sinusoidal Waves:


  
Figure 13: Moving sine wave
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=6 cm
\epsfbox{figs/sho6.eps}
\end{center}\end{figure}


\begin{eqnarray*}y & = & A\sin(kx-\omega t-\phi ) \\
& = & A\sin\left(\frac{2\pi}{\lambda }(x-vt)-\phi\right)
\end{eqnarray*}



\begin{displaymath}f = \frac{\vert v\vert }{\lambda }=\frac{\omega }{2\pi };
\quad k = \frac{2\pi }{\lambda };\quad vt = \frac{\omega }{k}\end{displaymath} (25)

Transverse velocity:

\begin{displaymath}v^{trans } = \left.\frac{\partial y}{\partial t}\right\vert _x = -\omega A
\cos (kx-\omega t-\phi )\end{displaymath} (26)

Wave equation:

\begin{displaymath}\frac{\partial^2y}{\partial t^2} - v^2\frac{\partial^2y}
{\partial x^2} = 0 \end{displaymath} (27)

Speed of transverse wave on string:

\begin{displaymath}v = \sqrt{F/\mu }\qquad (\mbox{from\ Newton's\ 2nd\ Law}) \end{displaymath} (28)

Energy transmitted by sinusoidal wave:

\begin{displaymath}\frac{dE}{dt} = \frac{1}{2}\mu\omega^2A^2v\quad \mbox {(watts)} \end{displaymath} (29)



gabor@theory.uwinnipeg.ca
2001-01-05