next up previous contents index
Next: Kepler's Laws: Up: GRAVITATION-Ch.14 Previous: Gravitational Potential Energy

Circular Orbits

We first consider the motion of planets and satellites in circular orbits.


  
Figure 5: Circular Orbit
\begin{figure}
\begin{center}
\leavevmode
\epsfxsize=4 cm
\epsfbox{figs/grav3.eps}
\end{center}\end{figure}

Total energy of a satellite of mass m in an orbit of radius r around a planet of mass M is :

\begin{displaymath}E = 1/2mv^2 - \frac{GMm}{r} = -1/2\frac{GMm}{r} \end{displaymath} (7)

where we have used the fact that the centripetal force is provided by the force of gravity: $\displaystyle\frac{mv^2}{r} = \frac{GMm}{r^2}$         ( Fgrav = macentripetal)
beginequation10pt]

gabor@theory.uwinnipeg.ca
2001-01-05