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1 ROTATIONAL MOTION OF RIGID BODIES-Ch.10/11

1.1 Circular Motion of Point Mass

1.1.1 Definitions of Physical Quantities

Angular Velocity:

do V¢
Ww=—=—
dt r
Angular Acceleration:
dw  a;
a=—=—
dt r
Period:
2 2
7= _ AT
V¢ w
Centripetal Acceleration:
vt
. = —

Rotational Kinetic Energy:
1 1 1
KE,ot = §mvt2 = §m(m))2 = 5[@02

Moment of Inertia about a Given Axis of Rotation:

I =mr?



Torque

T:rFl:TFsin(Q):Ia:%

Angular Momentum

L =1w=muyr

NOTE:

e Angular velocity, angular acceleration, torque and angular momentum are vector
quantities. The above formulas give their magnitudes. Their directions are always
perpendicular to the plane of rotation, with the actual direction determined by the
right hand rule: curl the fingers of your right hand along the direction of rotation,

and your thumb points along the direction of the corresponding vector.

e Moment of inertia, torque, angular momentum are always defined relative to a given
axis of rotation. Different choices of axis give different values of these quantities for

the same mass moving with the same linear velocity.



1.1.2 Torque and Angular Momentum as Cross Products

The Cross Product
C=AxB
of two vectors A and B is defined as the vector with magnitude:
C = ABsin(f)

where 6 is the angle subtended by the two vectors. The direction of the cross product Cis
always perpendicular to both A and B with the direction of the arrow determined by the
right hand rule: point the fingers of your right hand from A to E, and your thumb points

along the direction of the cross product A x B.

[

Figure 2: Cross Product



NOTE:

e The magnitude of the cross product has a geometrical interpretation as the area of the

parallelogram subtended by the vectors A and B.
e BxA=-AxB (i.e. they have the same magnitude but point in opposite directions.
o If A and B are parallel, # = 0 and the cross product is zero.
Torque about an axis O on a point mass due to a force F:
F=FxF

where 7" is the position vector of the mass relative to the axis of rotation O.

Angular Momentum about an axis O of a point mass m moving with velocity :
L=7xp

where 7 is the position of the mass relative to the axis and p’= mu' is its linear momentum.



1.1.3 Comparison between linear and rotational quantities

Linear Motion

Circular Motion

Velocity: ¢
Inertial Mass: m
Kinetic Energy: imu?

Force: F

—

Linear Momentum: p'= mo

Second Law: ' = mad = %

Angular Velocity: &
Moment of Inertia: [
Kinetic Energy: %Iwz
Torque: 7 =7 X F

Angular Momentum: L=1&=7x 1

df.
dt

Second Law: 7= Iad =

Table 1: Table of Analogues Between Linear and Rotational Motion

1.2 Rotation of Rigid Bodies

e The distance between any two points in a rigid body remains constant.

e As arigid body rotates about some fixed axis O, every point P in the body necessarily

rotates with the same angular velocity and angular acceleration.

1.2.1

Rotational Kinetic Energy and Moment of Inertia

The total rotational energy is the sum of the rotational energies of each mass or molecule

that makes up the rigid body:

KErot =

Z(%mﬂ“?) (ﬂf

Ty

[Z mzrf] w? (1)

[N

where we have use the fact that w is the same for every point in the rigid body to remove

it from the sum. For rigid bodies, we cannot really sum over each molecule, so we split the



body into infinitesmal pieces, each of mass dm at a distance r from the axis of rotation, and

the sum becomes an integral:

1
KE,ot = §Iw2

where I is the moment of inertia of the body about the axis of rotation:

I = / dmr?
body

Shape Moment of Inertia
Uniform hoop/cylinder about center I=MR?
Uniform Disc/Solid Cylinder about center I =IMR?

Solid Sphere about any axis through center = %M R?

Hollow Sphere about any axis through center = %M R?
Uniform Rod about axis through center = 5 ML?
Uniform Rod about axis through end I=3iMIL?

Table 2: Table of Moments of Inertia of Various Rigid Bodies

Note

e The moment of inertia depends not only on the mass and size of the object, but also
how the mass is distributed about the axis of rotation. The more mass there is further

away from the rotation axis, the greater the moment of inertia.

e When applying the work-energy theorem (energy conservation) to rigid bodies, both
translational kinetic energy and rotational kinetic energy must be taken into account.
1.2.2 Newton’s Second Law for Rotating Rigid Bodies

The general motion of a rigid body can be completely described by the linear motion of its

center of mass and its rotation about the center of mass.



Newton’s Second Law therefore has two parts:
Linear Motion

— d_’
Fnet = M&’cm = ];;Ot

where ﬁnet = ﬁl + ﬁ2 + ... is the net force on the object, M is the total mass, dcn is

th acceleration of the center of mass of the object, and pi,y = MU, is its total linear
momentum.

Rotational Motion

=

dL
7_—‘net =Jld=—

dt

where 7,6t = 1 X ﬁl + 75 X ﬁQ + ... is the net torque on the object, I is its moment of inertia
about its center of mass, and L is its angular moment about the center of mass.

Note

e When applying Newton’s laws to solve for the motion of a system of objects, one must
apply the rotational version of the Second law to each extended object in the system

that is free to rotate.

e In the absence of net external torque the total angular momentum of any system of

objects (about any axis) is conserved.

10



1.3 Suggested Problems

10.15 *
10.24
10.25 *
10.33 *
10.39 *
10.43
11.11 *
11.25 *
11.33 *
11.41
11.54

Problems marked by * will be covered in tutorials.
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2 GRAVITATION-Ch.14

2.1 Newton’s Theory

In the 17th century, Sir Isaac Newton formulated his Law of Universal Gravitation to explain
the observed motions of astronomical objects such as the moon and the planets. It can be

summarized in words as:
“Every particle attracts every other particle with a force that is proportional to the

product of their masses and inversely proportional to the distance between them”

2.1.1 Equation Form of Newton’s Law of Gravitation

—_

E

[Batm

M

Figure 3: Gravitational force on m due to M

o GMm .
grav — T r (2)

r2

G = 6.67 x 107" Nm? /kg? (3)

12



2.1.2 Gravitational Field /Gravitational Acceleration

Foran GM
= = — r 4
g m 72 " (4)

NOTE: At the Earth’s surface: g = g = G}%E = 9.8m/s?

N

(M)

/TN

Figure 4: Acceleration field around a mass M

2.1.3 Gravitational Potential Energy
GMm

r

U=

Note:

a) U = 0 when r = oc by definition

b) Escape Velocity: give object enough kinetic energy to overcome gravitational potential

uw.

Figure 5: Gravitational Potential Energy

energy.

M
1/2mv%:GTm—>vE:\/2GM/T (6)

13



2.2 Circular Orbits

Consider the motion of planets and satellites in circular orbits.

@~
-~ ~
7 ~
4 N
7/ \

/7 \
, T .
1 \
1 \
] 1
' M '
\ 1
\ 1
\ /7
\ /
N /7
~ e
~ rd

_____

Figure 6: Circular Orbit

Gravity Provides Centripetal Force:

Total energy :

14



NOTE: The above works only if the mass of the satelite/planet is very small compared
to the mass of the object that it is orbitting. In general, both objects orbit their mutual

center of mass,as shown below:

Figure 7: Circular Orbit for Near Equal Masses

15



2.3 Kepler’s Laws:

2.3.1 1st Law: Planets Orbit in Elliptic Paths

Figure 8: Elliptic Orbit

P = perigee(satellites) /perihelion(planets)

A = apogee(satellites) /aphelion(planets)
. <7"1 + 79

= 5 ) = semi-major axis

2.3.2 2nd Law: Radius vector sweeps out equal areas in equal times.

Proof) From the rotational analogue of Newton’s 2nd law, namely

dL ,
T= = where 7 = 7 X F' (torque) and
L=18=Fxp (8)
we find that
L = mvrsinf = constant 9)

which implies dA = J=dt = constant x dt (see diagram above)

2.3.3 3rd Law: The square of the period is proportional to the cube of the

semi-major axis.
2
R 2

T° = —
am"

(10)
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2.4 Einstein’s Theory of Relativity
2.4.1 Problems with Newton’s Law of Gravitation:

1. It gave the wrong prediction for the precession of Mercury’s orbit

2. Tt didn’t explain why the gravitational force on an object was proportional to its
inertial mass (i.e. why objects fell with an acceleration independent of their mass and

composition).

3. It was inconsistent with Einstein’s Theory of Special Relativity: if an instantaneous
force of attraction existed between two distant objects, information about the location

of one is instantaneously transmitted to the other (i.e faster than the speed of light)

2.4.2 Main Features of General Relativity

1. Space has structure: it can be curved. A two dimensional representation of what the

curved space around the Sun might look like is given in Fig.9.
2. Matter causes space to curve.

3. Small objects travel along the straightest possible line in curved space (space-time):

i.e. space tells matter how to move

17



Figure 9: Curved space around a massive object

18



2.4.3 Black Holes

1. Definition: region of space so densely packed with matter that nothing, not even

light, can escape (i.e. escape velocity greater than speed of light)

2. Black holes form by gravitational collapse of stars that have burned up all thermonu-

clear fuel or by collapse of stars at center of galaxy.

3. surface that separated the region of no return from the rest of the universe is called

the event horizon of the black hole
4. Black holes that weigh one solar mass have a radius of about 5 km.

5. At the center of a black hole is a singularity, where all the mass of the black hole is

concentrated and the known laws of physics break down.

6. Inside the event horizon time and space exchange roles; once you fall below the event
horizon you can no more avoid falling to the singularity at the center than you can

avoid moving from 2:00 o’clock to 3:00 o’clock when you are outside.

19



2.5 Suggested Problems

14.2%
14.3
14.15%
14.19
14.24
14.28
14.30%*
14.33*
14.35*
14.38%*
14.64

20



3 SIMPLE HARMONIC MOTION — Ch. 13

Any system that is displaced slightly from a stable equilibrium position will experience a
restoring force and oscillate about that equilibrium position. If the initial displacement
is small enough, the restoring force is proportional to the displacement and the system

undergoes simple harmonic motion.

3.1 General Properties

Defining relation:
Fe—kr ot 2 (11)
=—kr & — = —wr
dt?

o= \Jkjm (12)

Solution:
x = Acos(wt + ¢) = acos(wt) + bsin(wt) (13)
v =—wAsin(wt + ¢) (14)
Amplitude:
|xma$| =A (15)
Period:

T = QM—” — 2\ fm/k (16)

Maximum Speed:

|Vmaz| = WA = /k/mA (17)
Mechanical energy:
1 1 1
E = §m'l)2 + §I€£L‘2 = 5147142 (18)

21



Initial Conditions:

The amplitude and phase can be determined from the initial position, z,, and velocity, v,,

A= |22+ %vg = /22 + (va/w)? (19)

¢ = cos ! (z,/A) — wt, = tan™" <_—Ua> — Wi, (20)

Wxq

at any initial time ¢ = £,:

NOTE: Both cos™! and tan~! are ambiguous: you must check that you have the correct
phase, by making sure that it yields the correct x,,v, at time t,.
Graph of solution: Need to know the amplitude, A, period, T" and the phase ¢, or equiv-

alently, the time ty = —¢/w that the oscillator goes through maximum displacement z = A.

Figure 10: Position-time and velocity-time graphs for the SHO

22



3.2 The Physical Pendulum

center of
gravity

Figure 11: The Physical Pendulum

= sinf ~ ————0 (21)

0 (mgL)
dt?
where [ is the moment of inertia of the pendulum, and the last expression is approximately

true for small angular displacements 6 (rads) << 1 Angular Frequency: w = /mGL/I

. . . I
Period: T = 27rm

23



3.2.1 Simple Pendulum:

I =mL?

Figure 12: Simple Pendulum

d*0 g L
U Iy poonlZ
az - L 7r\/;

24



3.2.2 Metre Stick:

1
I = gle

Figure 13: The Meter Stick

1 2
ngQle—tg = -mg5 sin 6
d*0 3
g~ 9/l

25

(23)

(24)



3.3 Suggested Problems

13.5
13.7
13.9 *
13.17
13.20
13.21
13.22
13.25 *
13.26
13.29
13.59 *

26



4 WAVES — Ch. 16-18.

4.1 General Properties
4.1.1 Types of Waves:

1. Mechanical
2. Electromagnetic/gravitational

3. Matter

4.1.2 Types of Wave Propagation:

1. Longitudinal (eg. spring, sound waves)
2. Transverse (eg String, electromagnetic)

3. Mixed (eg. Water)

4.1.3 Wave Pulse:

Yo% y=f(x-vt)

— v —|

Figure 14: Moving wave pulse

y = f(x — |v|t); moves along +ve x-axis, speed |v|

y = f(z + |v|t); moves along -ve x-axis, speed |v]

27



4.2 Sinusoidal Waves:

\
——

INZAN
NV

Figure 15: Moving sine wave

y = Asin(kz — wt — ¢)
= Asin(%r(x—vt)—dg

lv| w 27 w
=3 =% oo T
Transverse velocity:
9,
frans: — 8—? = —wAcos(kx — wt — ¢)
Wave equation:
Py _ 20 _
o U o

Speed of transverse wave on string:

v=1/F/p (from Newton’s 2nd Law)

Energy transmitted by sinusoidal wave:

dE 1
— = —w?A?
- 5 pw=A<v - (watts)

28
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4.3 Reflection and Transmission:

e incident from less dense to more dense: reflected part inverted (180° phase change)

transmitted part slows down (v4 > vp)

e incident from more dense to less dense: reflected part no phase change transmitted
part speeds up (v4 > vp)

Va
—

VAN

A B

Incident wave from less dense to more dense

\%
B

Incident wave from more dense to less dense

Figure 16: Reflection and transmission on a string

4.4 Sound Waves:

e longitudinal compression waves
e audible frequency range 20 Hz — 20,000 Hz

e speed of sound in air (at 20°C) 343 m/s

(v £ v,)

e Doppler effect: f' = f( o)
v F vy

4.5 Superposition of Waves:

4.5.1 General:
Y=ty

29



4.5.2 Constructive/destructive interference:
y = Asin(kr —wt) + Asin(kr — wt — ¢)
= 2Acos(¢/2)sin(kz — wt — ¢/2)

— constructive when ¢ = 0, £27, +47, (in phase)
— destructive when ¢ = +m, £37, +57 (180° out of phase)

4.5.3 Two Sources, In Phase, Same Frequency: but different paths:

Phase Shift:

Ty — T2

¢ =|

|2 — |r; — 19| = nA constructive

1
1y — o] = (n+ 5))\ destructive (30)

4.5.4 Standing Waves:
y = Asin(kx — wt) + Asin(kz + wt) = 2Asin(kx) cos(wt)

Nodes: z = g)\

4.5.5 Modes of a String Fixed at Both Ends:

2
A= —L
n
v Fn
o= =yfm5e
An 2L

30



0.2

Figure 17: First 3 Fundamental Modes of a String
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4.6 Suggested Problems—Chapters 16-18

16.36*
16.51*
17.35%
17.39*
18.1%*

18.8%*

18.13*
18.22*

32



5 WAVE PROPERTIES OF LIGHT — Ch. 35-37

5.1 General

e Qualitative Properties of Electromagnetic Spectrum:

gamma rays; uv; visible; IR; micro; tv/radio
e speed of light in vacuum: ¢ = 3 x 10°m/s

e frequency: f=c/\

5.2 Refraction

5.2.1 Index of refraction:

n=cfv>1

5.2.2 Snell’s Law:

(less dense)

(more dense)

el ]

Figure 18: Refraction

33
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5.2.3 Total internal reflection:

sinfe = = < 1 (32)
Ny

(less dense)

(more dense)

Figure 19: Total Internal Reflection

5.2.4 Dispersion:

Index of refraction decreases with increasing wavelength, so that blue light has higher index

of refraction and bends more than red light.

Figure 20: Change of index of refracton with wavelength

34



5.2.5 Rainbows:

white
light from
sun

raindrop

Figure 21: Refraction, Diffraction and Internal Reflection of Light Inside a Raindrop

5.3 Interference

r1 — re) = m\ constructive

(ry —1r3) = (m+ 1/2)\ destructive
5.3.1 Huygen’s Principle

5.3.2 Young’s Double Slit Experiment

Figure 22: Young’s Double Slit Experiment

. ; Bright
sin aBrzght —y

Dark

sin 0Pk = Yo = (m + 1/2)3

35



5.3.3 Thin Films:

Figure 23: Reflection by Thin Film

For n > n; and n > ns:

destructrive interference occurs when 2t =m—
n

A
constructive interference occurs when 2t = (m +1/2)—
n

NOTE: 180° phase change on reflection of more dense material

5.3.4 Single Slit Diffraction:

Dark
. Y A
singPork ~ 2 — =

Figure 24: Single Slit Diffraction

36
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5.4 Suggested Problems

CHAPTER 35.

35.6%
35.10
35.18
35.28%*
35.39%

CHAPTERS 37 & 38.

37.1
37.2%
37.4
37.30
37.31
37.32
37.59*
38.2%

37



6 QUANTUM MECHANICS - Ch. 40, 41

6.1 BlackBody Radiation/UV Catastrophe

Planck’s Postulates
1.) E =nhf (energy of molecules quantized)
2.) E, = hf (energy of light comes in “lumps”)

h=6.63x107%*J-S

6.2 Photoelectric Effect

I{Ewmazc:hf_gZs fC:d)/h
(leV = 1.6 x 10719])
Einstein’s Explanation:

— light made up of a stream of particles with energy E, = hf

6.3 Compton Effect:

Scatter x-rays off electrons in carbon

Evzhf:% N == = (1 cosd)
6.4 de Broglie Wavelength:
A=l
p  mv

38



6.5 Wave Mechanics

Particles described by wavefunction 1 (x); probability, P, of finding particle between = and
T +dz is
P = [(z)Pdx (34)

6.6 Consequences of Wave Mechanics:

1. Electron Interference Pattern

2. Uncertainty Principle

h
NxAp > — 35
zhp > o (35)
3. Particle in a Box:
Yu(z) = Asin <$> (36)
(fundamental modes) n=1,2,3,...
h nh
P=—=—
A 2L (37)
P? nZh?
E,=—"=—+ 38
2m  8mlL? (38)
4. Hydrogen Atom:
mu, Ty, = nh (39)
Tp = GoN° (40)
ke? 1
2a, n? (41)

39



6.7 Suggested Problems

40.1%*
40.9*
40.16*
40.25*
40.54%*
41.1%
41.5%
41.10%*

40



