next up previous index
Next: About this document ... Up: Nuclear Physics Previous: Nuclear Reactions

Problems

% latex2html id marker 895
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

Calculate the total binding energy of 2010 Ne.

Solution:
By Table 29.3 in the text, we see that 2010 Ne has a mass of 19.992439 u. Since Neon has 10 protons and 10 neutrons, the mass deficiency is

10 x 1.007825 + 10 x 1.008665 - 19.992439 = 0.172461 u .

This corresponds to an energy of

E = mc 2 = 0.172461 u x 931.5 $\displaystyle{\frac{{\:\rm MeV}}{{\:\rm u}\ {\:\rm c}^2}}$ c 2 = 160.6 MeV .

Thus, the binding energy is 160.6 MeV, or about 8.0 MeV per nucleon.







% latex2html id marker 902
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

Suppose you begin with 1.0 x 10- 2 g of a pure radioactive substance and 4 h later determine that 0.25 x 10- 2 g remain. What is the half-life of the substance?

Solution:
For this we will use the relation

N = N0e - $\scriptstyle\lambda$t $\displaystyle\Rightarrow$ $\displaystyle{\frac{N}{N_0}}$ = $\displaystyle\left(\frac{1}{2}\right)$t/T1/2,

where T1/2 = ln 2/$\lambda$ has been used. We then have

$\displaystyle{\frac{0.25\times 10^{-2}}{1.0\times 10^{-2}}}$ = 0.25 = $\displaystyle\left(\frac{1}{2}\right)$t/T1/2 $\displaystyle\Rightarrow$ ln 0.25 = $\displaystyle{\frac{4\ {\:\rm h}}{T_{1/2}}}$ln $\displaystyle\left(\frac{1}{2}\right)=$ - $\displaystyle{\frac{4\ {\:\rm h}}{T_{1/2}}}$ln 2,

from which we find T1/2 = 2.0 h.







% latex2html id marker 921
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

The 14C content decreases after the death of a living system with a half-life of 5739 years. If the 14C content of an old piece of wood is found to be 12.5% of that of an equivalent present-day sample, how old is the piece of wood?

Solution:
This will also use the relation

N = N0e - $\scriptstyle\lambda$t $\displaystyle\Rightarrow$ $\displaystyle{\frac{N}{N_0}}$ = $\displaystyle\left(\frac{1}{2}\right)$t/T1/2.

With the data given, we find

0.125 = $\displaystyle\left(\frac{1}{2}\right)$t/5739 yr $\displaystyle\Rightarrow$ ln 0.125 = $\displaystyle{\frac{t}{5739\ {\:\rm yr}}}$ln $\displaystyle\left(\frac{1}{2}\right)=$ - $\displaystyle{\frac{t}{5739\ {\:\rm yr}}}$ ln 2,

from which we deduce that t = 17,217 yr.







% latex2html id marker 937
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

Find the energy released in the alpha-decay

23892 U $\displaystyle\to$23490 Th + 42 He

Solution:
For this we shall need the masses

     M$\displaystyle\left({}^{238}_{92}{\:\rm U}\right)=$238.050786 u ,   
     M$\displaystyle\left({}^{234}_{90}{\:\rm Th}\right)=$234.043583 u ,   
     M$\displaystyle\left({}^{4}_{22}{\:\rm He}\right)=$4.002603 u ,   
from which we find the mass difference to be

238.050786 - (234.043583 + 4.002603) = 0.0046 u .

This corresponds to an energy of

E = mc 2 = 0.0046 u x 931.5 $\displaystyle{\frac{{\:\rm MeV}}{{\:\rm u}\ {\:\rm c}^2}}$ c 2 = 4.29 MeV .

Thus, the reaction releases an energy of 4.29 MeV.







% latex2html id marker 948
$\fbox{\bf PROBLEM \thechapter.\arabic{probcount}}$

Suppose that the sun consists entirely of hydrogen and that the dominant energy-releasing reaction is

4$\displaystyle\left({}^{1}_{1}{\:\rm H}\right)\to$42 He + 2$\displaystyle\left({}^{0}_{1}{\:\rm e}\right)+$2$\displaystyle\nu$ + $\displaystyle\gamma$.

If the total power output of the sun is assumed to remain constant at 3.9 x 1026 W, how long will it take for all of the hydrogen to be burned up? Take the mass of the sun as 1.99 x 1030 kg.

Solution:
We first find the total number of hydrogen atoms in the sun by calculating

$\displaystyle{\frac{1.99\times 10^{30} \ {\:\rm kg}}{1.67\times 10^{-27}\ {\:\rm kg}/\ {\:\rm atom}}}$ = 1.192 x 1057 atoms .

Now, the reaction quoted has a mass difference of

4 x 1.007825 - (4.002603 + 2 x 0.000549) = 0.027599 u ,

which corresponds to an energy of

E = mc 2 = 0.027599 u x 931.5 $\displaystyle{\frac{{\:\rm MeV}}{{\:\rm u}\ {\:\rm c}^2}}$ c 2 = 25.71 MeV .

Since each individual reaction consumes 4 Hydrogen atoms, the total energy available in the sun is

1.192 x 1057 atoms x 25.71 $\displaystyle{\frac{{\:\rm MeV}}{4\ {\:\rm atoms}}}$ x 106$\displaystyle{\frac{{\:\rm eV}}{{\:\rm MeV}}}$ x $\displaystyle{\frac{1.6\times 10^{-19}\ {\:\rm J}}{{\:\rm eV}}}$ = 1.225 x 1045 J .

The lifetime of the sun can then be estimated as

$\displaystyle{\frac{1.225\times 10^{45}\ {\:\rm J}}{3.9\times 10^{26}\ {\:\rm J}/\ {\:\rm s}}}$ x $\displaystyle{\frac{1 \ {\:\rm h}}{3600\ {\:\rm s}}}$ x $\displaystyle{\frac{1 \ {\:\rm d}}{24\ {\:\rm h}}}$ x $\displaystyle{\frac{1 \ {\:\rm yr}}{365\ {\:\rm d}}}$ = 9.96 x 1010 yr .

Thus, this gives an estimated lifetime of about 99.6 billion years.


next up previous index
Next: About this document ... Up: Nuclear Physics Previous: Nuclear Reactions

www-admin@theory.uwinnipeg.ca
10/9/1997