next up previous index
Next: Collisions and Kinetic Energy Up: Momentum and Collisions Previous: Momentum and Impulse

Conservation of Momentum

Momentum is conserved in any collision if the effect of any external forces present is negliable relative to the effect of the collision. Consider a collision as shown in Figure (6.1).

 
Figure 6.1: 1-D Collision
\begin{figure}
\begin{center}
\leavevmode
\epsfysize=2 cm
\epsfbox{fig61.eps}\end{center}\end{figure}

Apply the impulse-momentum theorem to m1 and m2 separately,

$\displaystyle\bar{F}_{1}^{}$$\displaystyle\Delta$t = $\displaystyle\Delta$p1 = m1v1f - m1v1i   
$\displaystyle\bar{F}_{2}^{}$$\displaystyle\Delta$t = $\displaystyle\Delta$p2 = m2v2f - m2v2i   
where $\bar{F}_{1}^{}$ = the average force of m2 on m1 , and $\bar{F}_{2}^{}$ = the average force of m1 on m2 . By Newton's third law F1(t) = - F2(t) which gives $\bar{F}_{1}^{}$ = - $\bar{F}_{2}^{}$ and so,
($\displaystyle\bar{F}_{1}^{}$ + $\displaystyle\bar{F}_{2}^{}$)$\displaystyle\Delta$t = m1v1f - m1v1i + m2v2f - m2v2i = 0        

$\displaystyle\Rightarrow$ p1f + p2f = p1i + p2i.      (4)
This is the statement of the conservation of momentum.

Note:


next up previous index
Next: Collisions and Kinetic Energy Up: Momentum and Collisions Previous: Momentum and Impulse

www-admin@theory.uwinnipeg.ca
10/9/1997